

المقصـود بمفهـوم اختيـار المشـروع project selection العمليــة الموجهــة نحــو تقييــم المشــروع الواحــد أو مجمـوعــة مــن المشـروعــات بهــدف اختيــار المشــروع (أو المشـروعـات) المراد تنفيذها

September 25, 2024 الكاتب: د. محمد العامري عدد المشاهدات: 2891

المرافقين Project management عبادات المامرة ا

دراسة الجدوى: معايير اختيار المشروع

project selection

المقصود بمفهـوم اختيار المشـروع المشـروع (أو المشـروعات) المـراد تنفيذهـا لغـرض تحقيـق الأهـداف مجموعـة مـن المشـروعات بهـدف اختيار المشـروع (أو المشـروعات) المـراد تنفيذهـا لغـرض تحقيـق الأهـداف المحددة من قبل المنظمة أو مجموعة منظمات. ويمكن اعتماد هذا المدخل في تقيم أي من المشـروعات داخل المنظمة الواحدة عندما تكون مجموعة من البدائل المتنافسة. ومثال على ذلك، يمكن أن تستخدم الشركة الصناعية هذا المدخل في تقييم البدائل عندما ترغب في اختيار الماكينة التي تناسب أي العمليات التصنيعية فيها.

جميع الحقوق معفوظة www. mohammedaameri.com ففي هذا الفصل، سوف يتم التركيز على استعراض الأساليب التي تستخدمها المنظمة لغرض اختيار الأفكار التي تساند عملية اختيار المشروع الأفضل، لأن لكل مشروع من المشروعات تحت الدراسة (أو البدائل) العديد من العوامل مثل الكلفة والعوائد والمخاطر المختلفة.

٦-7- نماذج معايير اختيار المشروع:

أن الاختيار المناسب والسليم للمشروعات الاستثمارية يعتبر من القرارات البالغة الأهمية لبقائها في السوق وتطورها للأمد البعيد. وبما أن الموارد -أي كانت- محدودة لدى جميع المنظمات والأفراد وحتى الدول مما تحد من قدراتها الاستثمارية، وهذا ما يجعلها تبحث عن الأساليب والنماذج المستخدمة في اختيار المشروع (أو البدائل) الأنسب الذي يحقق الزيادة في العوائد والمنافع المالية وغير المالية. وهذا يعني اختيار الاستثمارات من الموارد الرأسمالية المحدودة أو لتحسين الموقف التنافسي للمنظمة. وهذه الأساليب والنماذج تستخدم في تقييم البدائل المتاحة في عملية الاختيار الأولية حيث تعتبر أيضًا المفتاح الأساسي في تخصيص وإعادة تخصيص (توزيم) الموارد المتاحة لدى المنظمة.

وأن المعايير التاليـة تعتـبر غايـة فـي الأهميـة عنـدما تختـار المنظمـة النمـوذج المستخدم فـي عمليـة اختيـار المشروع ـ (.Souder, 1973).)

1- الواقعية Realism: يجب أن يعكس النموذج الحالة الواقعية للقرار المتخذ من قبل إدارة المنظمة أو إدارة المشروع، بما في ذلك الأهـداف المتعـددة Multiple objectives (أو المتضاربة أحيانًا) لكـل مـن المنظمة ومديروها. ومثال على ذلك، لنفترض بأن المشروع الأول يحقق القوة في مكانة المنظمة بالسوق ويزيد من حصتها السوقية من خلال التوسع بالطاقات، في حين أن البدايل الثاني يؤدي إلى تحسين الموقف التنافسي من خلال تقوية الكادر الفني بالمنظمة. كما لو افترضنا بأن جميع المتغيرات الأخرى متساوية، ما هو البديل الأفضل؟ وهنا يتوجب على النموذج أن يأخذ بنظر الاعتبار الحالة الواقعية الحقيقية المحددة للمنظمة مثل الطاقات والرأسمال والقوى العاملة وغيرها. كما ويتوجب أن يشتمل النموذج أيضًا على العوامل المتعلقة بكـل مـن الخطـر الفنـي للأداء والتكلفـة والزمـن والخطـر السـوقي الـذي قـد ينجـم نتيجـة رفـض المسـتهلكين للنموذج.

9- الأهلية أو القدرة Copobility: يتوجب أن يكون النموذج معقد لدرجة كافية في جعله يتعامل مع الفترات الزمنية المتعددة وقادر على تحفيز كلا الحالات الداخلية والخارجية للمشروع مثل التغيرات التي يمكن أن Optimization. تحدث في معدلات سعر الفائدة على القروض بما يجعل القرار مناسباً في تحقيق الأمثلة .flexibility 9- المرونة Flexibility: يجب على النموذج من إعطاء النتائج الشاملة من المديات الواسعة للشروط والظروف التي تحيط بالمنظمة والتي يتوقع من التعامل معها. وهذا يعني بأن النموذج سهل التطوير والتحديث في آن واحد وقادر على تغيير أو تعديل حاله وSelf adjusting في المواجهة مع التغيرات التي تحدث في بيئة المنظمة. ومثال على هذه التغيرات التي تحدق في قـوانين وتشريعات الضرائب والتغيرات التكنولوجية وغيرها.

4- سهولة الاستخدام Easy to use : وهـذا يعنـي بـأن يكـون النمـوذج ملائـم بدرجـة كافيـة وسـهل الفهـم والاستخدام ولا يستغرق زمنا طويلاً في تطبيقاته العملية. كما ويجب أن يحاكي النتائج المتوقعة ذات الصلة بالاستثمارات الموجهة لمحافظ المشروع المختلفة.

5- التكلفة Cost: يجب أن تكون عملية تجميع البيانات ونماذج التكلفة ذات العلاقة لا تمثل عبا كبيراً من حيث الكلف على المشروع وبالتأكيد يجب أن تكون أقل بكثير من المنافع المتوخاة من تطبيقاتها. ولا بد من مناقشة جميع الكلف وعناصرها بما في ذلك إدارة الكلف وتشفيل النموذج.

6- سهولة الحوسبة الكترونيا Easy computerization: يجب أن تكون ملائمة وسهلة في عملية تجميع وتخزين البيانات والمعلومات في قواعد البيانات المحوسبة وسهلة الاسترجاع والاستخدام الواسع بتطبيق الحزم المعيارية (النمطية) Standard computer packages مثل البرمجيات الجاهزة والجداول الإلكترونية Spread sheets

2-7- نماذج وأنماط اختيار المشروع:

تنقسم النماذج المستخدمة في اختيار المشروع إلى نمطين أساسين هما: النماذج الرقمية Nonnumeric models والنماذج غير الرقمية Nonnumeric models، وكلاهما يستخدمان بصورة واسعة في التطبيقات العملية. وأن كثيرًا من المنظمات تستخدم هذين النمطين من النماذج في آن واحد أو تستخدم هذه المنظمات تشكيلية (أو توليفة) من النماذج الرقمية وغير الرقمية كما تم ذلك في الفصل السادس من هذا الكتاب. والمقصود بالنماذج غير الرقمية هي تلك التي لا تستخدم الأرقام في مدخلاتها، في حين أن النمط الآخر - النماذج الرقمية- تستخدم الأرقام فيم دخلاتها، إلا أنه يمكن أن يكون المعيار Criteria موضوعيا Objective أو لا موضوعيا Subjective وهــذا يعنــي، بـأن المعـايير الكميــة للمشــروع تمثــل الأرقــام وأن معــايير القيــاس اللاموضوعية تتمتع بأهمية كبيرة حالها حال المعايير الموضوعية. وسوف يتم استعراض جميع هذه المعايير في الفقرات القادمة من هذا الفصل استكمالا لما جاء في الفصل السادس السابق.

وقبل البدء باستعراض هذه النماذج المستخدمة في اختيار المشروع، وكذلك قبل التأكيد على حاجتنا من النموذج أو ماذا نريد من النموذج أن يحقق لنا، لابد من معرفة حقيقتين هامتين هما:

النماذج لا تصنع القرارات وإنما الأفراد هم الذين يصنعونها ويتخذونها.

جميع النماذج ومهما بلغت من درجة التعقيد فإنها تستعرض أو تمثل فقط جزءا من الواقعية الحقيقية للمشكلة تحت الدراسة كما جاء ذلك في الفصل الثالث من هذا الكتاب. لأن الواقعية الكاملة بعيدة كل البعد عن إمكانية النموذج مهما بلغت درجة تعقيداته من أن يغطيها بالكامل.

وأن استخدام النموذج عبارة عن المساعدة في صنع القرارات المتعلقة باختيار البديل المناسب أو الأفضل للمشروع تحت الدراسة. وفي أدناه نماذج من العوامل التي تدخل في النماذج المستخدمة في اختيار البدائل المتاحة للمشروع.

أولاً: العوامل المتعلقة بالإنتاج وتشمل على:

الزمن المستغرق لحين جاهزية المشروع لعملية نصب وتركيب المعدات والماكينات.

الزمن الضائع خلال عمليات النصب والتركيب.

منحنى التعليم Learning curve والذى يتعلق بالزمن المتراكم قبل البدء بالتشغيل.

كلف الفاقد والفضلات.

متطلبات الطاقة الكهربائية.

متطلبات التسهيلات من المعدات والماكينات.

التطبيقات المختلفة للتكنولوجيا.

التغيرات في تكلفة إنتاج المفردة الواحدة من المخرجات.

التغيرات في زمن الإنتاج اللازم للمخرجات.

التغيرات في كميات وكلف المواد الأولية ومستلزمات الإنتاج.

التغيرات في سياسات التوريد.

التغيرات في جودة المخرجات وكذلك في أساليب السيطرة على الجودة.

ثانيًا: العوامل التسويقية (عوامل السوق) وتشمل على:

حجم السوق المستهدف من المخرجات. توقعات الحصة السوقية المستهدفة. الزمن المتراكم لحين الوصول إلى الحصة السوقية. العوامل المؤثرة على خط المنتج القائم. القدرة على السيطرة على الجودة. توقعات الزبون. توقعات دورة حياة المنتج. ثالثًا: العوامل المالية وتشمل على:

الربحية والقيمة الحالية لاستثمار. العوامل المؤثرة على التدفقات النقدية. مدة استرداد الرأسمال المستثمر. الزمن المتراكم لحين الوصول إلى نقطة التعادل. حجم الاستثمار المطلوب. العوامل الموسمية المؤثرة. تكلفة الوصول بالمشروع إلى مستواه المقرر. مستوى الخطر المالي.

رابعًا: العوامل المتعلقة بالقوى العاملة وتشمل على:

متطلبات المهارات المطاوبة. متطلبات المهارات المطاوبة. وفرة المهارات العمالية المطلوبة. التغيرات المحتملة في قوة العمل من حيث الجنس والعمر والتوزيع الشامل لقوة العمل. متطلبات الاتصالات الداخلية والخارجية. العوامل المؤثرة على ظروف العمل.

> تلبية معايير وشروط السلامة الحكومية. تلبية شروط ومتطلبات البيئة الحكومية. العوامل المؤثرة على نظم المعلومات. العوامل المؤثرة على استخدامات الحاسب الآلي. الحاجة إلى العمل الاستشاري من داخل المنظمة ومن خارجها. مدى الاستجابة لقيود ومتطلبات أصحاب المصالح والمنافسين. كلف إدامة المهارات التى تلبى المتطلبات التكنولوجية المتجددة.

القدرات الإدارية اللازمة للتوجيه والسيطرة على العمليات الجديدة.

خامسًا: العوامل الإدارية والمختلفة وتشمل على:

والآن نستعرض النماذج الرقمية وغير الرقمية المستخدمة في المفاضلة بين البدائل المقترحة لاختيار المشروع بالتفصيل.

7-2-1- النماذج غير الرقمية:

تستخدم العديد من النماذج غير الرقمية في عملية اختيار المشروع، سوف نركز باختصار على أهمها بالآتي: 1- نمــوذج البقــرة المكرســة Sacred cow: يسـتخدم هــذا النمــوذج فــي الحالــة التــي يتــم فيهــا اقتــراح إنشــاء المشروع من الإدارة العليا والشخص المؤثر في المنظمة والذي غالباً ما يبدأ بعبارة بسيطة مثل إذا كانت هناك فرصة لماذا لا ننظر إلى هذا وذاك؟ ويتبع عادة ذلك فكرة غير مدروسة ولم يتم تطويرها بعد بخصوص منتج معين أو بخصوص تطوير سوق جديد وغير ذلك. وتكون عادة الاستجابة السريعة غير المدروسة لمثل هذه العبارة الصماء لولادة المشروع حيث تبقى عائمة لحين استكمال دراستها بنجاح أو لحين ما يقرر المسئول الأول بأن مثل هذه الفكرة فاشلة ولا يمكن تنفيذها.

2- الضرورة التشفيلية The operating necessity: وتعني الحاجة الملحة لإجراء المشروع نتيجة لحدوث حدث قد يكون خطير ومهم في المنظمة. ومثال على ذلك، ففي حالة حدوث الهزات الأرضية أو الفيضانات حيث يتطلب الإسراع في تنفيذ مشروعات قد لا تحتاج إلى الأسلوب الرسمي التفصيلي في عملية تقييم ذلك المشروع.

3- الضرورة التنافسية Competitive necessity: تقــوم المنظمــات علـــى اختلاف أحجامهــا وفعالياتهــا ببنــاء المشروعات بهدف تحقيق الضرورات التنافسية وكذلك المحافظة على تفوقها في السوق. وقد تكون مثل هذه الحالات تكون بحاجة هذه المشروعات عالية التعقيد التكنولوجي وباهضة الكلف والنفقات وفي مثل هذه الحالات تكون بحاجة ماسة أيضًا إلى النماذج الرقمية في عملية تقييم البدائل المتاحة.

4- التوسع في الطاقة الإنتاجية أو خط الإنتاج The product line extension: حيث يجري تطوير المشروع بهدف توزيع المنتج (أو المنتجات) الجديد بالاستناد على الحكم على درجة ملائمة ذلك المشروع لخط الإنتاج القائم ومعالجة الفجوة بالإضافة إلى تقوية الروابط الضعيفة فيه أو إجراء التوسع من خلال خط إنتاجي جديد وبتوجيه محدد. ففي بعض الأحيان لا توجد الضرورة لإجراء الحسابات الدقيقة للكلف والربحية لأن القرارات في مثل هذه الحالة تتخذ بالتخمين (الحدس) بأن المشروع سوف يؤثر إيجابياً على الأداء العام للنظام بأكمله في حالة إضافة الخط الإنتاجي الجديد.

2-2-7 النماذج الرقمية:

تستخدم معظم المنظمات -كما سبق القول- النماذج الرقمية في تقييم واختيار المشروع على أساس أن هذه النماذج النماذج التي تستند على أسس صلدة للقياس. وفي المبحث القادم سوف نناقش أولاً هذه النماذج بشقيها التي تتركز في تطبيقات نماذج التنقيط (أو النقاط) والأخرى المتعلقة بالمؤشرات المالية ومن ثم نستعرض بعض الأمثلة التي تدعم مفاهيمها.

نماذج التقدير أو التنقيط Scoring Models:

لغرض المفاضلة ما بين المشروعات المتعددة يتوجب دراسة العديد من العوامل مثل الجودة والتكلفة والحجم والمظهر الخارجي والأداء وغيرها. وتكون بعض هذه العوامل قابلة للقياس رقميا حيث يمكن مباشرة إجراء المفاضلة بينهما، في حين القسم الآخر من العوامل موضوعي مما يصعب قياسها رقميا وكذلك يصعب إجراء المفاضلة بينهما. وعموما، فإن الطريقة الأبسط والأسهل لإجراء المفاضلة في مثل هذه الحالات هي عمل كشف بالعوامل المهمة والضرورية ومن ثم إجراء المفاضلة ما بينهما من خلال مستوى الرضا عن الأداء الذي يقدمه كل من العوامل المحددة.

ويمكن تلخيص خطوات تطبيق نموذج التقدير أو التنقيط بالآتي:

- تحديد العوامل الأكثر أهمية في عملية صنع القرار.
- 2- تعين التقدير الأعلى الممكن لكل عامل من العوامل المقررة.
- 3- دراسة كل مشروع من خلال ذلك وإعطاء التقدير لكل عامل من العوامل وحتى التقدير الأعلى.
 - 4- جمع التقديرات لكل عامل من العوامل المحددة.
 - 5- اختيار البديل الذي يحقق أعلى تقدير إجمالي لجميع العوامل.
- 6- إجراء مناقشة النتائج من خلال النظر إلى بقية العوامل الأخرى وبعد ذلك اتخاذ القرار المناسب بالاختيار.

المثال:

تقوم شركة أحمد لصناعة الأجهزة الكهربائية بدراسة إطلاق موديل الثلاجة الجديدة الكبيرة الحجم من بين البدائل المطروحة الأربعة وباستخدام خمسة عوامل ضرورية للمفاضلة حيث يبين الجدول (1/7) نتائج التقديرات لهذه العوامل.

التحليل:

يعتبر العامل المالي أهم العوامل حيث أنه يأخذ التقدير الأعلى (30) نقطة، في حين أن العامل الإنتاجي يأخذ التقدير الثاني من حيث الأهمية حيث يبلغ (25/ 30) ومن بعده العامل الفنى وهكذا.

من نتائج الجدول أعلاه يتضح بأن البديل الثالث قد حقق أعلى تقدير إجمالي للعوامل الخمسة حيث بلغ (82/ 100) ويعتبر البديل الأفضل المرشح للإنتاج.

يعتبر البديل الأول من أفضل البدائل بالنسبة للعامل المالي حيث حصل على (28/ 30) إلا أنه ليس الأفضل من حيث التقدير الإجمالي للعوامل.

الجدول (٦/٦) نتائج التقديرات

العوامل	التقدير الأعلى	البديل الأول	البديل الثاني	البديل الثالث	البديل الرابع
العامل الفني	20	11	15	18	15
العامل المالي	30	28	16	26	12
العامل التسويقي	15	9	13	12	8
العامل الإنتاجي	25	18	19	20	19
مستو <i>ى</i> المنافسة	10	9	7	6	9
المجموع	100	75	70	72	63

3-7- معايير التحليل المالي:

إن تحقيق أكبر قدر ممكن من الربح لكل مشروع استثماري يؤدي إلى ظهور الحاجة للاختيار ما بين المشروعات المختلفة بالإضافة إلى التقديرات المسبقة للكلف التي يحتاجها المشروع وتوزيعها بين أوجه النشاطات المختلفة لذلك المشروع. ويجـري عـادة تحميـل هـذه الكلف علـى منتجـات المشـروع (المخرجـات) وكذلك تقديرات الإيرادات والعوائد المتوقعة من المشروع ومن ثم تجري المفاضلة ما بين المشروعات لاختيار البديل الأفضل من ناحية الربحية التجارية.

ويقصد بالنماذج الرقمية هنا هو المعايير المستخدمة في قياس الربحية التجارية للمشروع (أي كان) والتي يمكن تعريفها على أنها الطرق المستخدمة في التقييم المالي للمشروع وكذلك الأساليب والوسائل التي يكــون الغـرض منهــا قيــاس الأربــاح الحقيـقيــة التـــي تحققهــا الاســتثمارات المعنيــة لاســتخدامها كأســاس فـــي المفاضلة ما بين البدائل المختلفة للمشروع أو المشروعات. ويوجد عدد كبير من الطرق والمعايير المستخدمة في التحليل المالي لنتائج دراسة الجدوى للمشروع، إلا أنه سوف نتناول في هذا المبحث أهم المعايير الشائعة الاستخدام وهم:

العائد على الاستثمار (Return on investment (ROI) فترة الاسترداد Payback period صافي القيمة الحالية (Net present value (NPV) نسبة العائد إلى الكلف Cost/ benefit analysis معدل العائد الداخلي (Internal rate of return (IRR)

1-3-7 معيار العائد على الاستثمار:

من المعروف، توجد علاقة وثيقة بين ندرة الأموال وكمية الربح حيث يفترض بموجب النظرية الاقتصادية من أنه كلما قل عرض النقود (الأموال) في السوق لأغراض التمويل الاستثماري كلما سبب ذلك في زيادة الطلب عليها مما يؤدي إلى ارتفاع نسبة العائد على هذه الأموال.

إن استخدام معدل العائد على الاستثمار للمفاضلة في اختيار المشروع من بين البدائل المتاحة تحت الدراسة لم يكن بحقيقة الأمر بالجديد لأنه استخدم ولا يزال يستخدم في دراسات الجدوى وتقييم المشروعات، ولكن الجديد هنا هو الزيادة المتصاعدة في عدد المشروعات القائمة والتي سوف يتم إنشاءها والتي أصبحت تعترف من أن هذا المعيار أصبح وكأنه يمثل المعيار الوحيد الذي يمكن الاعتماد عليه في دراسات الجدوى أو في الحكم على كفاءة المشروعات المختلفة.

وأن مجالات استخدام العائد على الاستثمار تسير في اتجاهين: الأول ويتمثل في إجراء التقييم والمفاضلة ما بين بدائل المشروع المقترحة، أما الثاني فيتعلق بالحكم على كفاءة المنظمة باستخدام الأموال المتاحة لديها. وينظر إلى مقدرة المنظمة على استخدام الأموال المتاحة لديها من زاويتين يمثلان وجهان لعملة واحدة. الأولى هي مقدار ما تحققه كل وحدة استثمارية واحدة من العوائد والمتمثل بالدرجة الأساسية بما يسمى إنتاجية الرأسمال، والثانية هي عدد وحدات الاستثمار الضرورية لتحقيق وحدة واحدة من العوائد والمسماة معامل الرأسمال).

وفي الحالة الأولى، نستطيع قياس معدل العائد على الاستثمار (إنتاجية الرأسمال) من خلال حاصل قسمة مجموع صافي العوائد السنوية على إجمالي الاستثمار أو متوسط تكلفة الاستثمار، حيث تعتبر الطريقة الأخيرة الأكثر استخداما وتفضيلا. وهذا يعني:

ROI = NP INC

حيث أن:

ROI - معدل العائد من الاستثمار

NP - متوسط العائد السنوى الصافى (أي صافى الربح)

NC - متوسط تكلفة الاستثمار اللام للمشروع

أما الحالة الثانية وهي معامل الرأسمال فتحتسب عادة من حاصل قسمة إجمالي تكلفة الاستثمار مقسوما على متوسط العائد السنوي الصافي (أي صافي الربح). وهذا يعني:

CO =TI /NP

حيث أن:

co - معامل الرأسمال

TI - تكلفة إجمالي الاستثمار اللازم للمشروع

ويحسب معيار العائد على الاستثمار بطريقتين هما: تتم الأولى باستخدام صافي مجموع الأصول، أما الثانية فتتم باستخدام صافي حقوق الملكية، ويمكن التعبير عنه بالآتي:

ROI = NP INA = NS INA

أو

ROI = NP INS

حيث أن:

NA - صافى مجموع الأصول

NS - صافى المبيعات

المثال:

لو افترضنا بأن المشروع تحت الدراسة سوف يقوم بإنتاج عربة الطفل بالبيانات التقديرية التالية:

صافي مجموع الأصول = ٦٥٥٥٥٥٥ ريال

كمية الإنتاج المتوقعة = 200000 عربة

معدل العائد المتوقع من الاستثمار = 30%

التكلفة الثابتة المتوقعة = 400000 ريال شهريا

التكلفة المتغيرة المتوقعة = 4 ريالاً

المطلوب: إيجاد سعر البيع المناسب الذي يحقق الهدف من معيار العائد المتوقع من الاستثمار البالغ 30%.

الحل:

العائد السنوى المتوقع (المستهدف) يكون:

NP = 30% * 1000000 = 300000

لو افترضنا بأن P تمثل سعر البيع، عندئذ فإن الصياغة المتعادلة تكون كما يلي:

Q(P)-[(VC*Q)-fC]=NP

200000 (P)- [(200000 * 4)- 400000] = 300000

200000 (P) = 300000 + 800000 + 400000

200000 (P) = 1500000

 $\rho = 7.50$

2-3-2 معيار فترة الاسترداد:

لا يختلف معيار فترة لاسترداد كأحد المعايير المستخدمة في المفاضلة ما بين البدائل للمشروع عن بقية المعايير الأخرى، ألا إن الغرض من استخدام هذا المعيار يتركز في مقارنة مساهمة الرأسمال في المخرجات لمختلف البدائل الاستثمارية. وتحدد هذه المساهمة بالوفرة (أو الخفض) في كلف التشغيل والإنتاج السنوية للمشروعات البديلة المقترحة.

ويمكن تعريف معيار فترة الاسترداد على أنه الفترة التي يكون خلالها العائد على الاستثمار مساويا في القيمة للرأسمال المستثمر أو أنها الفترة التي يتمكن خلالها العائد على الاستثمار من تعويض قيمة الرأسمال المستثمر في المشروع. وطبقا لهذا المعيار، يكون العائد من المشروع على أنه مقدار الوفر أو التخفيض في حجم النفقات الجارية لإنتاج حجم معين من المنتجات التي تمثل نقطة التعادل في المفاضلة ما بين البدائل

المتاحة للمشروع.

وتحسب فترة الاسترداد للمشروع الواحد وكذلك للمفاضلة ما بين مشروعين -بديلين أو أكثر. ففي الحالة الأولى وهي للمشروع الواحد تكون فترة الاسترداد عبارة عن العلاقة ما بين تكلفة إجمالي الاستثمار اللازم للمشروع مقسوما على مجموع التحفقات النقدية السنوية الواردة من المشروع. ويمكن تمثيلها رياضيا بالآتى:

Tb = Tr / Tf

حيث أن:

Tf - التدفقات النقدية السنوية الواردة (العوائد) من المشروع

المثال:

لنفترض بأن تكلفة إجمالي الاستثمار اللازم للمشروع قد بلغت (100) ألف ريال وأن مجموع التدفقات النقدية السنوية Annual cash inflows الواردة بلغ (25) ألف دينار. وعليه، فإن فترة الاسترداد تكون:

T b = (00000 1 + 25000) = 4

أما بالنسبة للمفاضلة ما بين المشروعات، فيترتب على هذا المعيار بديلين أو أكثر حيث أن المشروع الأول يحتاج إلى استثمارات أكثر من المشروع الثاني. وأن فترة اللى استثمارات أكثر من المشروع الثاني. وأن فترة الاسترداد هنا تشير إلى أن الفترة التي تستطيع خلالها الوفورات الناجمة من تخفيض النفقات الجارية بتعويض الزيادة في حجم الاستثمارات الموجهة للمشروع الأول. وهذا يعني الآتي:

(Tb = (Tc2 - TcI) | (T11 - T12)

حىث أن:

Tb - فترة الاسترداد (شهر أو سنة)

Tc1 - النفقات الجارية للبديل (المشروع) الأول

Tc2 - النفقات الجارية للبديل (المشروع) الثاني

T11 - تكلفة إجمالي الاستثمار اللازم للمشروع الأول

T12 - تكلفة إجمالي الاستثمار اللازم للمشروع الثاني

7-3-3 صافى القيمة الحالية:

يعتبر هذا المعيار بالإضافة إلى المعايير الأربعة الأخرى من المعايير الواجب الأخذ بها واستخدامها في دراسات الجدوى حيث لابد من التأكيد هنا على استخدامها سوية لأن لكل واحد منها هدفا معين. فمثلاً، أن المعايير الأربعة الأخرى لم تأخذ بالحسبان القيمة الزمنية للنقود في الوقت الذي يعمل معيار صافي القيمة الحالية بالعودة بقيمة العوائد التي يحققها المشروع خلال دورة حياته بالإضافة إلى الكلف التي يتم إنفاقها في المستقبل إلى قيمها الحالية، أي إلى سنة الأساس التي تتم بها دراسة الجدوى. وبموجب معيار صافي القيمة الحالية، يستخدم سعر الخصم في احتساب القيمة الحالية للاستثمارات المالية المقدرة للمشروع والتي يمكن أن تتفق خلال السنة الأولى أو خلال عدة سنوات من حياة المشروع تحت الدراسة. وكذلك احتساب القيمة الحالية للاستثمارات الرأسمالية بالقيمة الحالية للإيرادات النقدية نحصل على صافي القيمة الحالية للاستثمار. وأما بالنسبة للمشروعات التي تكون صافي قيمتها الحالية سالبة فتعتبر هذه المشروعات خاسرة ويتم التوقف عن تنفيذها.

وتحتسب القيم الحالية بدلالة المعادلة التالية:

Ap = Af / (I+I)T

حىث أن:

مA - القيمة الحالية

Af - القيمة الأساسية للبند

ا - النسبة المئوبة السنوبة

T - عدد السنوات

وتستخرج صافي القيمة الحالية من حاصل طرح القيمة الحالية لمجموع الكلف من القيمة الحالية لجميع العوائد وكالآتى:

NAp= Tf- TC

المثال:

تنوي شركة الهناء للأجهزة الكهربائية بإطلاق المنتج الجديد حيث توفر لديها نتيجة الدراسة نموذجين بديلين من المنتج الجديد وكما يلى:

- تكلفة إجمالي الاستثمار اللازم لكل من النموذجين = 100000 دينار

* العوائد المتوقعة لسنوات قادمة عديدة تبلغ:

النموذج - البديل الأول = 300000 دينار خلال السنوات الخمس القادمة

النموذج - البديل الثاني = 500000 دينار خلال العشر سنوات القادمة

* تستخدم الشركة نسبة الخصم Discounting rate البالغة (20%) للعائد في المستقبل.

المطلوب أي من النموذجين سوف تختار الشركة؟

الحل:

إن حل المثال في مثل هذه الحالة يعود إلى مقارنة مقدار العوائد الواردة في فترات زمنية مختلفة حيث يتم أولًا احتساب القيمة الحالية وكما يلي:

- تبلغ عوائد النموذج - البديل الأول = 300000 دينار خلال السنوات الخمس القادمة، فإن القيمة الحالية تكون:

Aρ = Af | (|+ |)T

 $A\rho = 300000 I (1 + 0.2)5 = 300000 / 2.488 = 120563$

- تبلغ عوائد النموذج - البديل الثاني = 500000 دينار خلال العشر سنوات القادمة، فإن القيمة الحالية تكون:

 $A\rho = 500000 / (1 + 0.2)10 = 500000 / 6.192 = 80753$

من النتائج أعلاه يتبين بأن النموذج - البديل الأول يحقق القيم الحالية الأعلى وعليه سيكون القرار باختياره.

التحليل:

فإذا تم طرح تكلفة إجمالي الاستثمار اللازم لكل من النموذجين والبالغة 100000 دينار من هذه العوائد، فإن النموذج – البديل الأول يحقق صافي الربح بمقدار 20563 دينار بالقيمة الحالية (120563 - 120500)، في حين أن النموذج – البديل الثاني يحقق خسارة مقدارها 19247 دينار (80753 - 100000). وهذا يعني بأن القرار يجب أن يرفض النموذج – البديل الثاني في أي حال من الأحوال.

7-3-4- نسبة العائد إلى الكلف:

تمثل نسبة العائد إلى الكلف (Tp) العلاقة النسبية ما بين القيمة الحالية للإيرادات (العوائد) وبين القيمة الحالية لمجموع الكلف المتوقعة في المشروع (المشروعات) تحت الدراسة. ويمكن صياغة هذه العلاقة راضيا بالآتي:

نسبة العائد إلى الكلف (%) = القيمة الحالية لمجموع العائد أو الإيرادات / القيمة الحالية لمجموع الكلف أو: lρ = Tf / TJ

ولغرض توضيح نسبة العائد إلى الكف، نورد المثال التالي:

المثال:

لقد أجريت دراسة الجدوى على البديلين المبنية بياناتهما في الجدول (7/ 2) بهدف اختيار البديل الأفضل لإنشاء مشروع صناعي لإنتاج لعب الأطفال، حيث تقرر اعتماد معيار نسبة العائد إلى الكلف في المفاضلة ما بين البديلين. وقد بلغت تقديرات الاستثمارات اللازمة لكل بديل ما مقداره (50) ألف دينار وأن سعر الخصم المعتمد يساوي (14%). هذا مع العلم بأن مبالغ الاستثمارات لكلا البديلين من المتوقع إنفاقهما في بداية دورة حيات المشروعين أي في سنة الأساس.

الجدول (7/ 2) إجمالي الإيرادات (العوائد) والكلف المتوقعة للمشروعين

معامل الخصم		قيم المشروع الثاني (ريال)		قيم المشروع الأول (ريال)	
	الكلف	الإيرادات	الكلف	الإيرادات	
0.877	6000	30000	5000	32000	1
0.769	6000	28000	6000	3200	2
0.675	6000	26000	6000	28000	3
0.593	5000	26000	6000	28000	4
0.519	5000	26000	6000	28000	5
0.456	5000	26000	6000	28000	6
-	-	-	-	*2000	7

^{*} قيمة تخريد المشروع في نهاية حياته حيث تعتبر من ضمن الإيرادات.

الحل:

Tf = (32000 2 0.877) + (32000 2 0.769) + (28000 2 0.675) + (28000 2

(0.592) + (28000 2 0.519) + (28000 2 0.456) + (2000 0.456) =

= 116360

أ- تحليل مؤشرات المشروع - البديل الأول:

^{*} القيمة الحالية للعوائد تساوي:

^{*} القيمة الحالية للإجمالي للكلف:

TI = (50000 + 5000 2 0.877) + (6000 2 0.769) + (6000 2 0.675) +

(6000 2 0.592) + (6000 2 0.5J9) + (6000 2 0.456) = 72451

* نسبة العوائد إلى الكلف تساوى:

I=Tf/T1= 116360 / 72451 = 1.606

ب- تحليل مؤشرات المشروع - البديل الثاني:

* القيمة الحالية للعوائد تساوى:

Tf = (30000 2 0.877) + (28000 2 0.769) + (26000 2 0.675) + (26000)

2 (0.592) + (26000 2 0.519) + (26000 X 0.456) = 1 06134

* القيمة الحالية للإجمالي للكلف:

TI = (50000 + 6000 2 0.877) + (6000 2 0.769) + (6000 2 0.675) +

 $(5000 \ 2 \ 0.592) + (5000 \ 2 \ 0.519) + (5000 \ 2 \ 0.456) = 71761$

* نسبة العوائد إلى الكلف تساوي:

I=Tf / T1= 106134 / 71761 = 1.479

أن نسبة العوائد إلى إجمالي الكلف تمثل القيمة التي تزيد عن الواحد الصحيح مما يجعلها نسبة مقبولة، حيث يكون المشروع - البديل مقبولاً. أما في الحالة التي تكون فيها هذه النسبة تساوي أقل من الواحد الصحيح، فإن المشروع لا يكون مقبولاً لأن إجمالي كلفة تزيد عن مجموع إيراداته المتوقعة، ويكون القرار برفض المشروع كلياً.

7-3-7- معدل العائد الداخلى:

لقد تم استخدام سعر الخصم في المعايير السابقة مثل معيار صافي القيمة الحالية ومعيار نسبة العوائد إلى إجمال الكلف، وخلافاً لهذين المعيارين فإن استخدام معيار العائد الداخلي يتم البحث عن سعر الخصم الذي عنده تتساوى القيمة الحالية للإيرادات مع القيمة الحالية لإجمال الكلف. وهذا يعني بأن سعر الخصم يجعل صافي القيمة الحالية مساويا للصفر يسمى بمعدل العائد الداخلي.

ويعتبر هذا المعيار بمثابة المقياس الذي يستخدم في المفاضلة والترجيح ما بين المشروعات المختلفة والتي يتقرر تنفيذها خلال الفترة الزمنية المعينة بهدف تحقيق مستوى معين من الربحية التجارية. ويصبح صافي القيمة الحالية للإيرادات مساويا للصفر في الحالة التي يكون عندها صافي القيمة الحالية مساويا تماماً للقيمة الحالية لإجمالي كلف المشروع. وتمثل هذه الحالة نقطة التعادل ما بين طرفي المعادلة وكما مبين في أدناه:

Tf - Ti = 0

وباستخدام معدل العائد الداخلي يصبح متوفرا معيار آخر للمفاضلة ما بين البدائل - المشروعات، حيث بالإمكان إيجاد هـذا المعـدل لكـل بـديل مـن المشروعـات تحـت الدراسـة وإجـراء المفاضلـة بينهمـا وبالتـالي فـإن البـديل -المشروع الذي يحقق القيمة الأعلى يعتبر البديل الأفضل.

المثال:

المطلوب احتساب معدل العائد الداخلي للمشروع الذي يتوقع له أن يحقق صافي التدفقات النقدية (العوائد) المبنية في الجدول (7/ 3). (114-113) (Waters, 2000, p. 113-114)

الجدول (7/ 3) العوائد المتوقعة من المشروع

	صافي العوائد (ريال)	السنة
- 2000	0	
- 500	1	
- 200	2	
800	3	
1800	4	
1600	5	
1500	6	
200	7	
100	8	

الحل:

لقد استخدمت الجداول الإلكترونية Spread sheets في حل المثال حيث تم احتساب معدل العائد الداخلي بنسبة (20%) والتي أعطت صافي القيمة الحالية مساوية للقيمة صفر صحيح. ويبين الشكل (7/ 1) حسابات الجداول الإلكترونية لمعدل العائد الداخلي باستخدام البيانات السابقة في الجدول (7/ 3). الشكل (7/ 1) حسابات الجداول الإلكترونية لمعدل العائد الداخلي

2	Ş	ب	Ĵ	
قيمة الخصم	سعر الخصم	صافي التدفقات النقدية	السنة	1
				5
-2000	1.0000	- 2000	0	3
- 417	1.2000	- 500	1	4
- 139	1.4400	- 200	5	5
463	1.7280	800	3	6
868	2.0736	1800	4	7
643	2.4883	1600	5	8

	٥	Ş			ب		į	
502		2.9860		1500		6		9
56		3.5832		200		7		10
23		4.2998		100		8		11
								12
0			3	3300		المجموع		13
								14
		20%		15		معدل العائد الداخلي		15

تحليل الحساسية:

إن تطبيقات المعايير السابقة وغيرها فــي دراسات الجـدوى للمشروعات يعتمـد علــى الفـروض والتوقعات والتقـديرات التــي يمارسـها فريــق دراسـة الجـدوى وعلــى نتـائج هـذه الحسابات والفـروض يقــوم هـذا الفريــق بالمفاضلة ما بين البدائل واتخاذا لقرار باختيار البديل الأفضل منها. وأن مثل هذه الفروض التــي تستخدم فــي احتساب المعايير وكأساس للمفاضلة بين المشروعات كثيرة ومتعددة ومنها ما يلــى:

الأسعار المتعلقـة بمستلزمات التشييـد والبنـاء والإنتـاج وكذلـك أسـعار الخـدمات والمنتجـات والسـلع النهائيـة التـي سـتـقـوم المشروعات بإنتاجها وغيرها.

كميات المبيعات المتوقعة سنوياً أو خلال أية فترة تعتمدها الدراسة.

الطاقة الإنتاجية للمشروع ومعدلات استغلالها.

العمر الاقتصادي للمشروع (دورة حياة المشروع) والذي يتم على أساسه احتساب جميع الكلف والعوائد على حداً سواء. التغيرات في الكلفة الجزئية أو الكلية.

فروضات أخرى مثل أسعار الفائدة والرأسمال العامل وغيرها.

ومن هنا، لابد من الأخذ بنظر الاعتبار التغيرات التي يمكن أن تحدث في كل المتغيرات والفروض أو قسما منها وبالتالي يجب معرفة ماذا سيحدث لاحقاً لو تمت مثل هذه التغيرات على نتائج دراسة الجدوى. ومثال على ذلك، ماذا سيحدث لمعايير معدل العائد الداخلي أو نسبة العائد إلى الكلف أو صافي القيمة الحالية أو لجميع هذه المعايير لو حدث تغير في أحد المتغيرات أو الفروض المذكورة في أعلاه. وهل تتغير نتائج حسابات هذه المعايير أيضًا؟

وعليه، يتوجب على فريق دراسة الجدوى من إعادة احتساب المعايير السابقة في ضوء هذه التغيرات في أحد الفروض أو المتغيرات أو جميعها في آن واحد. ومن ثم تعاد العمليات الحسابية والتحليل مرة أخرى ولأخرى ولأخرى وهكذا حتى يتمكن فريق دراسة الجدوى في النهاية من تحديد أثر التغير (أو التغيرات) التي يمكن أن تطرأ على مـؤشرات الجـدوى. وتعـرف هـذه العمليـة بتحليـل الحساسـية لمـؤشرات دراسـة الجـدوى للمشـروع (المشروعات) وهي تعني مدى استجابة المشروع وحساسيته للتغير أو التغيرات التي تحدث في العوامل السابقة الذكر والتي قد تؤثر سلباً أم إيجابا على مؤشرات ومعطيات الجدوى للمشروع تحت الدراسة. أن إجراء

تحليل الحساسية يساعد على حل كل المشكلات والتساؤلات التي تصاحب دراسات الجدوى للمشروعات وخاصة التعامل مع حالات عدم التأكد Uncertainty ووجود مقدار معين من المخاطرة. وتستخدم العديد من الطرق والأساليب ذات الدقة العالية في تحليل الحساسية والتي تتعامل بصورة واسعة مع قواعد الاحتمالية مما يتطلب استخدام الحاسب الإلكتروني في عملياتها.

7-4- تحليل نقطة التعادل:

قبل البدء بدراسة الجدوى الفنية والمؤشرات الأخرى للمشروع تحت الدراسة لابد من معرفة ماذا سيكون الطلب المتوقع على مخرجات المشروع عالياً أو معتدلا أو منخفضا. وأن جميع هذه الاحتمالات تؤثر بالدرجة الرئيسية على حساب الطاقات المطلوبة للمشروع تحت الدراسة.

والمقصود بنقطة التعادل Break-even point هو كمية المنتجات (المخرجات) التي يجب أن تنتجها وتسوقها المنظمة قبل تغطيتها لجميع الكلف والبدء بتحقيق الربح. ويجب أيضًا أن تغطي مجموع العوائد على الأقل التي يحققها المشروع مجموع كلف تطوير وإنتاج المنتج (أو المنتجات). ويمكن إيجاد الربح -كما سبق القول- بدلالة المعادلة البسيطة التالية:

الربح = مجموع العوائد - مجموع الكلف

أو:

Pr= TR - TC

حيث أن:

Pr - مقدار الربح المتوقع (دينار).

TR - مجموع العوائد (دينار)

TC - التكلفة الكلية (دينار)

وتشمل هنا التكلفة الكلية على عنصرين أساسين هما التكلفة الثابتة (£C) والتكلفة المتغيرة (Q) VC)). ويمكن التعبير رياضيا كما يلى:

وأن مجموع العائد يساوي حاصل ضرب الكميات المباعة بالسعر، أي:

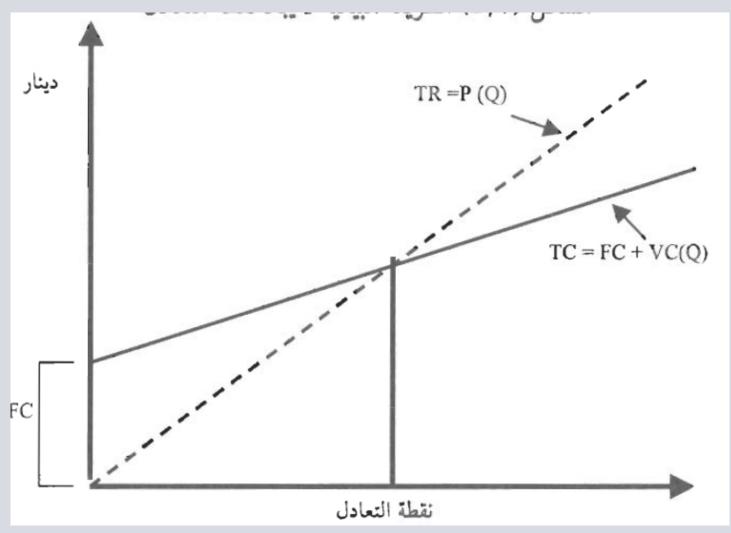
(TC = fC + VC (Q

وأن مجموع العائد يساوي حاصل ضرب الكميات المباعة بالسعر، أي:

(TR = P(Q))

وهذا يعني بأن نقطة التعادل هي النقطة التي تتساوى عندها مجموع العوائد ومجموع الكلف وكالآتي:

(fC + VC(Q) = P(Q)


أما الكمية لنقطة إعادة الطلب والتى نستخرجها من المعادلة أعلاه، فهى بدلالة المعادلة التالية:

(Q*= fC / (P - VC

وأن نقطة التعادل في قيم العوائد والكلف هي:

TR - TC = 0

ويمكن أيضًا عرض نقطة التعادل وتحديدها بالطريقة البيانية كما مبين في الشكل (7/ 2).

المثال:

تنوي شركة قيس لصناعة الإلكترونيات بإطلاق منتجها الجديد الذي يجري اختياره من بين المنتجات البديلة المطروحة الثلاثة حيث البيانات الواردة في الجدول (7/ 4) أدناه.

الجدول (7/ 4) بيانات البدائل الثلاثة

ات	ءائل من المنتجا	البد	التفاصيا		
الثالث	الثاني	الأول	التفاصيل	ت	
1200	900	600	الطلب السنوي المتوقع	1	
1200	900	680	تكلفة المفردة الواحدة المنتجة (ريال)	2	
1290	1000	760	سعر بيع المفردة الواحدة (ريال)	3	
500000	3500000	200000	التكلفة الثابتة (ريال)	4	
8	5	3	دورة حياة المنتج المتوقعة (سنة)	5	

```
الحل:
نقطة
۷C -
نحصل
```

نقطة التعادل لكل منتج بدلالة المعادلة التالية:

(Q*=fC/(P-VC)

نحصل على النتائج الآتية:

* المنتج - البديل الأول:

Q* = 200000 / (760-680) = 2500

* المنتج - البديل الثانى:

 $Q^* = 350000 / (1000 - 900) = 3500$

* المنتج - البديل الثالث:

Q* = 500000 / (1290-1200) = 5556

التحليل:

(أ) فإذا رغبت الشركة بأقل كمية لنقطة التعادل، فإنها سوف تختار المنتج الأول.

(ب) وقد ترغب الشركة بتركيز اهتمامها بصورة أكثر على الزمن المستغرق لحين الوصول إلى نقطة التعادل، فهذا يحتسب كالآتى:

الزمن المستغرق لحين الوصول إلى نقطة التعادل = كمية نقطة التعادل كمية 🏿 الطلب.

* المنتج - البديل الأول: 2500 🏿 600 = 4.2 سنة

* المنتج - البديل الثاني: 3500 🛚 900 = 9.0 سنة

* المنتج - البديل الثالث: 5556 🛚 1200 منة

فَفَى هذه الحالة يصبح المنتج الثاني هو البديل الأفضل لأنه سوف يحقق الأرباح قبل البديلين الأخرين.

(ج) ومن الممكن أن يكون لدى الشركة هدفا آخراً وهو تعظيم الربح في الأمد الطويل، أي خلال دورة حياة المنتج المتوقعة، عندئذ:

مجموع الربح = مجموع العوائد - مجموع التكلفة الكلية

أو:

Pr = TR - TC

حيث أن:

مجموع العوائد = عمر المنتج 🏿 الطلب السنوي 🖺 سعر بيع المفردة الواحد

مجموع التكلفة الكلية = عمر المنتج 🏿 الطلب السنوي 🖺 سعر بيع المفردة الواحدة + التكلفة الثابتة

وأن مجموع الربح خلال دورة حياة المنتج المتوقعة ستكون للبدائل كما يلى:

* المنتج - البديل الأول = (3] 600] 600] + (680] 600] 600 (680) - (680)

* المنتج - البديل الثاني = (5 ½ 900 ½ 900) - (5 ٪ 900 ك 900) - (900 ك 900)

* المنتج - البحيل الثالث = (8] 1200] 1200] - (1200] 1200] 1200 - (1200) - (1200)

يتضح من نتائج الحسابات أعلاه، بأن المنتج الأول يحقق خسارة خلال دورة حياته المتوقعة بما مقدارها (56000) ريال، في حين أن البديل الثالث يظهر هو الأفضل لأنه يحقق أعلى مستوى للربح خلال دورة حياته المتوقعة بما مقداره (364000) ريال.

اختيار التكنولوجيا:

التكنولوجيا تعني مجموعة الأساليب والطرق التي بواسطتها يتم تحويل المواد الأولية والمواد التكميلية

الأخرى إلى السلع المنتجة ذات القيمة الاستهلاكية. وأن المشكلات (المسائل) التي تـواجه عملية اختيار التكنولوجيا التكنولوجيا المناسبة عند إجراء الدراسة الفنية للمشروع تشتمل على اختيار ذلك النمط من التكنولوجيا المتاحـة الـذي يحقـق الزيادة المستهدفة فـي المخرجـات بالإضافـة إلـى تحسـين جودتهـا وتقليـل التكلفـة الممكنة.

وتبدأ عملية تصميم واختيار التكنولوجيا المناسبة والتي تعتبر من أبرز القضايا التي تواجهها عملية دراسة الجـدوى الفنيـة للمشـروع، تبـدأ مـن إعـداد المسـار التكنولـوجي Technological process، أي تحديـد مسـار العمليات الأساسية وكذلك طرق استخدام وتشفيل المعدات والماكينات ذات الكفاية الإنتاجية العالية. وتعتبر عملية اختيار البديل الأفضل من التكنولوجيا المناسبة أحد الشروط الأساسية في دراسة الجدوى الفنية لفرض تحقيق الهدف المركزي وهو الحصول على المعدلات العالية من مخرجات المشروع وبالجودة المطلوبة لكل من المخرجات والبيئة الداخلية والخارجية. وأن دراسة وتحليل العديد من البدائل المتاحة للأساليب التكنولوجية تبدأ عادة من دراسة وتحليل الكلف الناجمة عن تلك الأساليب. ويجري تحليل التكلفة ذات العلاقة بإحدى الطريقتين وهما: تجزئة الكلف إلى عناصرها، والثانية إعداد الحسابات المتعلقة ببعض عناصر الكلف التي تختلف من بديل إلى آخر. وتعتمد الصيغة العامة لاحتساب كلف التكنولوجيا على الآتى:

الكلف الثابتة.

الكلف المتغيرة.

حجم المخرجات.

المثال:

ترغب شركة الزهراء لإنتاج الأجهزة المكتبية في تنفيذ خطها الإنتاجي الجديد والذي من المتوقع استخدامه لإنتاج ماكينة التصوير والاستنساخ الجديدة. وقد توصل فريق دراسة الجدوى إلى دراسة البديلين المتاحين من تكنولوجيا تصنيع مثل هذه الأجهزة اللتان تحققان المستوى المتناظر من تقليل كميات الأجهزة والمكونات المنتجة المعابة والمرفوضة من قبل مفتشي ضبط الجودة حالياً، أي تقليل الفاقد في المخرجات وكلفها. وقد تبين بأن التكلفة الثابتة التقديرية للبديل الأول تساوي (205) ألف دينار وتبلغ التكلفة المتغيرة المتوقعة (650) دينارا للوحدة المنتجة بهذا البديل التكنولوجي. في حين تبلغ التكلفة الثابتة التقديرية للبديل الثاني (145) ألف دينار والتكلفة المتغيرة التقديرية (800) دينارا للوحدة المنتجة بهذا البديل التكنولوجي.

إيجاد نقطة التعادل التي يكون ما بعدها البديل التكنولوجي الأول أكثر اقتصادياً أي الأنسب. إيجاد الفرق في التكلفة الكلية ما بين البديلين إذ الكمية المراد إنتاجها تساوي (500) وحدة سنوياً. الحل:

- (أ) إيجاد التكلفة الكلية لكلا البديلين بدلالة المعادلة التالية:
 - TC = fC / (VC(Q))
 - TC1 = 205000 + 650 (Q)
 - (TC2 = 145000 + 800)
 - (ب) وتكون كمية الإنتاج التي تحقق نقطة التعادل هي:

Q) = 145000 + 800 (Q)) 650 + 20500

150 (Q) = 205000 - 145000

Q = 400

وهذا يعنى بأن الكمية لنقطة التعادل لكلا البديلين هي (400) وحدة سنوياً.

- (ج) في حالة زيادة كمية الإنتاج عن كمية نقطة التعادل أعلاه، يكون البديل التكنولوجي الأول هو الأفضل اقتصادباً.
 - (د) أما في حالة أن تكون الكمية (500) وحدة سنوياً، فإن الكلف لكلا البديلين تكون كما يلي:

TC1 = 205000 + 650 (500)

TC1 = 530000

TC2 = 145 + 800 (500)

TC2 = 545000

الفرق في التكلفة الكلية ما بين البديلين، يكون:

15000 = 530000 - 54500

5-7- تحديد الحاجة التقديرية من الموارد الأخرى للمشروع: ﴿

المقصود بالموارد الأخرى للمشروع هي موارد التشغيل والطاقة والمواد ومستلزمات المشروع الأخرى حيث سيتم استعراضها بشكل مختصر من خلال هذا المبحث. والمقصود بالموارد التشغيلية الضرورية للمشروع هي الموارد التي تستهلك عادة بالكامل في الدورة التشغيلية الواحدة وتحتسب كلفها بالكامل أيضًا أو بدفعة واحدة في كلف الشغيل أو المخرجات. كما وأن هذه الموارد تفقد خواصها الاستهلاكية خلال الدورة التشغيلية الواحدة.

إن الحاجة التقديرية من الموارد التشغيلية لمستويات المخزون من المواد الأولية والأجزاء التكميلية والمكونات بأنواعها المختلفة وكذلك مواد الصيانة وقطع الغيار وغيرها من مستلزمات التشغيل بالإضافة إلى الوقود، تحدد عادة باستخدام المعدلات المعيارية Norms للاستهلاك. وتشمل هذه الموارد على ما يلي:

- * المواد الأولية الرئيسية والمساعدة للتشفيل أو للإنتاج.
- * الوقود والطاقة المحركة fuel and energy ، حيث تنقسم إلى قسمين هما:
- الوقـود والطاقـة المحركـة للأغـراض التكنولوجيـة وهـي التـي تسـاهـم فـي تشغيـل المعـدات والماكينـات الإنتاجية والمساعدة بالمشروع.
- الطاقة والوقود الذي يستخدم لأغراض الإنارة والتهوية والتدفئة وتوليد المياه الساخنة والبخار وغيرها لسد احتياجات المشروع بالكامل.
 - * الأجزاء والمكونات التكميلية التي يتم توريدها إلى المشروع.

إن مثل هذا التقسيم للموارد يحدد الخصائص المختلفة باتجاهات الاستهلاك لها وبالتالي يتطلب تطبيق الطرق المختلفة في تحديد المعدلات المعيارية للحاجة من هذه الموارد بهدف تحقيق الاستهلاك العقلاني السليم منها. وتهدف جميع الأعمال والفعاليات المتعلقة بتنظيم وبرمجة الموارد التشغيلية إلى تحقيق الآتى:

- 1- تحديد المعدلات المعيارية للاستهلاك هذه الموارد وإجراء المراجعة الدورية وإعادة النظر بها بين الحين والآخر، لأن منحنى الخبرة يؤدى إلى خفض مثل هذه المعدلات.
 - 2- تحديد الحاجة التقديرية للموارد التشفيلية في ضوء نتائج ما جاء في الفقرة السابقة.
- 3- تنظيم الأمور المتعلقة بالمحافظة على هذه الموارد وتحددي مستويات تخزينها ونظام السيطرة عليها وضمان ديمومة التوريد وبأقل الكلف الممكنة بما يحقق استمرارية التشغيل من دون حدوث التوقفات.

المرجع:

كتاب : إدارة المشروعات العامة General Project Management ، من تأليف أ. د. عبد الستار محمد العالي، من إصدار دار المسيرة ، عمان.